1.
First, let's find a function that describes this situation.
Let:
t be the temperature of the measuring tape:
L(t) be the lengt of the tape
We'll have that:
[tex]\begin{gathered} L(t)=30+(t-50)(30\cdot\frac{0.00064}{100}),t\ge50 \\ \end{gathered}[/tex]Let's calculate L(100):
[tex]\begin{gathered} L(100)=30+(100-50)(30\cdot\frac{0.00064}{100}) \\ \rightarrow L(100)=30.0096 \end{gathered}[/tex]The tape is now 0.0096ft longer
2.
To get the percent error, we divide the original lenght by the expanded lenght, substract that from 1, and multiply by 100:
[tex](1-\frac{30}{30.0096})\cdot100\rightarrow0.03[/tex]The percent error is 0.03%