if z varies jointly with x and y and inversely as w, and if z = 2 when...

• General joint variation equation:
[tex]z=k\cdot xy[/tex]• Inverse variation:
[tex]z=\frac{1}{w}[/tex]If we unite these expressions we can get:
[tex]z=\frac{k\cdot xy}{w}[/tex]The first data is given to calculate the constant of proportionality k, where:
• z = 2
,• x = 6
,• y = 6
,• w = 9
Replacing these values in the expression formed:
[tex]2=\frac{k\cdot(6)\cdot(6)}{9}[/tex]Solving for k:
[tex]2\cdot9=k\cdot36[/tex][tex]k=\frac{2\cdot9}{36}=\frac{1}{2}[/tex]Then we can replace k in the expression:
[tex]z=\frac{k\cdot xy}{w}=\frac{1}{2}\cdot\frac{xy}{w}=\frac{xy}{2w}[/tex][tex]z=\frac{xy}{2w}[/tex]Finally, we can replace the last values given to get z:
[tex]z=\frac{2\cdot3}{2\cdot12}[/tex][tex]z=\frac{6}{24}[/tex]Simplifying:
[tex]z=\frac{1}{4}[/tex]Answer:
[tex]z=\frac{1}{4}[/tex]