Respuesta :

• General joint variation equation:

[tex]z=k\cdot xy[/tex]

• Inverse variation:

[tex]z=\frac{1}{w}[/tex]

If we unite these expressions we can get:

[tex]z=\frac{k\cdot xy}{w}[/tex]

The first data is given to calculate the constant of proportionality k, where:

• z = 2

,

• x = 6

,

• y = 6

,

• w = 9

Replacing these values in the expression formed:

[tex]2=\frac{k\cdot(6)\cdot(6)}{9}[/tex]

Solving for k:

[tex]2\cdot9=k\cdot36[/tex][tex]k=\frac{2\cdot9}{36}=\frac{1}{2}[/tex]

Then we can replace k in the expression:

[tex]z=\frac{k\cdot xy}{w}=\frac{1}{2}\cdot\frac{xy}{w}=\frac{xy}{2w}[/tex][tex]z=\frac{xy}{2w}[/tex]

Finally, we can replace the last values given to get z:

[tex]z=\frac{2\cdot3}{2\cdot12}[/tex][tex]z=\frac{6}{24}[/tex]

Simplifying:

[tex]z=\frac{1}{4}[/tex]

Answer:

[tex]z=\frac{1}{4}[/tex]

RELAXING NOICE
Relax