= Homework: 6.8Question 1, 6.8.1Part 1 of 5The size P of a certain insect population at time t (in days) obeys the function P(t) = 200 e0.)(a) Determine the number of insects at t = 1 days0.087e

Given the function
[tex]P(t)=200e^{0.08t}[/tex]A)t=0
[tex]P(0)=200e^0[/tex][tex]P(0)=200[/tex]Then the population of insects in t=0 is 200
B)
rate=0.08
C) population after 10 years t=10
[tex]P(10)=200e^{0.08*10}[/tex][tex]P(10)=445.108[/tex]then in 10 years the population will be 445.11
D)when will the population reach 320 P(t)=320
[tex]320=200e^{0.08t}[/tex]Solve for t
[tex]ln(\frac{320}{200})=0.08t[/tex][tex]\frac{0.47}{0.08}=t[/tex]t=5.875
then
the population will reach 320 after 5.88 years
e) when will the insect population double p(t)=400
[tex]400=200e^{0.08t}[/tex][tex]ln(\frac{400}{200})=0.08t[/tex]t=8.664
then the population will double in 8.66 years