Respuesta :

Given

Solve using completing the square

[tex]x^2-8x+4\text{ =0}[/tex]

Step 1

Keep x terms on the left and move the constant to the right side

by subtracting it on both sides

[tex]x^2-8x=-4[/tex]

Step 2

Take half of the x term and square it

[tex](-8\text{ }\times\frac{1}{2})^2=16[/tex]

Step 3

Then add the result (16) to both sides

[tex]x^2-8x+16=-4+16[/tex]

Step 4

Rewrite the perfect square on the left

[tex](x-4)^2=-4+16[/tex]

and combine terms on the right

[tex](x-4)^2=12[/tex]

Step 5

Take the square root of both sides

[tex]x-4=\pm\sqrt[]{12}[/tex]

Simplify the Radical

[tex]x-4=\pm2\sqrt[]{3}[/tex]

Step 6

Isolate the x on the left side and

solve for x

[tex]x=4\pm2\sqrt[]{3}[/tex]

therefore

[tex]\begin{gathered} x=4+2\sqrt[]{3} \\ \\ x=4-2\sqrt[]{3} \end{gathered}[/tex]

which becomes

x = 7.4641

x = 0.535898

RELAXING NOICE
Relax