Please solve number 9. Solve each equation by completing the square. Simplify all irrational and complex solutions

Given
Solve using completing the square
[tex]x^2-8x+4\text{ =0}[/tex]Step 1
Keep x terms on the left and move the constant to the right side
by subtracting it on both sides
[tex]x^2-8x=-4[/tex]Step 2
Take half of the x term and square it
[tex](-8\text{ }\times\frac{1}{2})^2=16[/tex]Step 3
Then add the result (16) to both sides
[tex]x^2-8x+16=-4+16[/tex]Step 4
Rewrite the perfect square on the left
[tex](x-4)^2=-4+16[/tex]and combine terms on the right
[tex](x-4)^2=12[/tex]Step 5
Take the square root of both sides
[tex]x-4=\pm\sqrt[]{12}[/tex]Simplify the Radical
[tex]x-4=\pm2\sqrt[]{3}[/tex]Step 6
Isolate the x on the left side and
solve for x
[tex]x=4\pm2\sqrt[]{3}[/tex]therefore
[tex]\begin{gathered} x=4+2\sqrt[]{3} \\ \\ x=4-2\sqrt[]{3} \end{gathered}[/tex]which becomes
x = 7.4641
x = 0.535898