Respuesta :

[tex](f\circ g)(x)=x^2-9x+18[/tex]

Explanation

[tex]\begin{gathered} f(x)=x^2-3x \\ g(x)=x-3 \end{gathered}[/tex]

Step 1

replace g(x) in f(x),where x

[tex]\begin{gathered} f(x)=x^2-3x \\ (f\circ g)(x)=(x-3)^2-3(x-3) \end{gathered}[/tex]

Step 2

operate

remember:

[tex](a-b)^2=a^2-2ab+b^2[/tex]

Hence,

[tex]\begin{gathered} (f\circ g)(x)=(x-3)^2-3(x-3) \\ (f\circ g)(x)=(x^2-2\cdot x\cdot3+3^2)-3(x-3) \\ (f\circ g)(x)=(x^2-6x+9)-3x+9 \\ (f\circ g)(x)=x^2-6x+9-3x+9 \\ (f\circ g)(x)=x^2-9x+18 \end{gathered}[/tex]

I hope this helps you

RELAXING NOICE
Relax