The answer is this:
[tex](0.44389,0.71211)[/tex]But we have to round those numbers to the nearest hundredth (two decimal places), so:
[tex]\begin{gathered} 0.44389\approx0.44 \\ 0.71211\approx0.71 \end{gathered}[/tex]Therefore, the answer is :
[tex](0.44,0.71)[/tex]a confidence interval for a population proportion is given by:
[tex]\begin{gathered} p\pm Zc\sqrt[]{\frac{p\cdot(1-p)}{n}} \\ \end{gathered}[/tex]Some common confidence levels are:
[tex]\begin{gathered} 90\colon Zc\approx1.645_{} \\ 95\colon Zc\approx1.960 \\ 99\colon Zc\approx2.576 \end{gathered}[/tex]In this case:
[tex]\begin{gathered} n=\text{ Sample size=90} \\ p=\text{proportion of females}=\frac{52}{90}\approx0.578 \end{gathered}[/tex]You replace those values into the equation, and you can find the confidence interval