The equation of a continuous exponential growth model is:
[tex]A=A_0\cdot e^{kt}[/tex]Where A represents the population at time t, A_0 represents the population at time t=0 and k is the hourly growth rate parameter.
Substitute A=1426, A_0=1300, and t=2:
[tex]\Rightarrow1426=1300\cdot e^{2k}[/tex]Solve for k:
[tex]\begin{gathered} \Rightarrow\frac{1426}{1300}=e^{2k} \\ \Rightarrow\ln (\frac{1426}{1300})=2k \\ \Rightarrow\frac{1}{2}\ln (\frac{1426}{1300})=k \\ \Rightarrow k=\frac{1}{2}\ln (\frac{1426}{1300}) \end{gathered}[/tex]Use a calculator to find the value of k:
[tex]\Rightarrow k=0.04625452876\ldots[/tex]As a percentage, the value of k is 4.625...%
Therefore, to the nearest hundredth, the hourly growth rate parameter is:
[tex]4.63\text{ \%}[/tex]