Given data:
* The original length of the rope is L = 3.72 m.
* The area of cross-section of rope is,
[tex]A=0.154\times10^{-4}m^2[/tex]* The Young's modulus of rope is,
[tex]Y=19.1\times10^{10}Nm^{-2}[/tex]* The mass of the load is,
[tex]m=286\text{ kg}[/tex]Solution:
The weight of the load is,
[tex]\begin{gathered} W=mg \\ W=286\times9.8 \\ W=2802.8\text{ N} \end{gathered}[/tex]Young's modulus of the rope in terms of the weight, area, and the original length of the rope is,
[tex]Y=\frac{WL}{Al}[/tex]where l is the change in the length,
Substituting the known values,
[tex]\begin{gathered} 19.1\times10^{10}=\frac{2802.8\times3.72}{0.154\times10^{-4}\times l} \\ l=\frac{2802.8\times3.72}{0.154\times10^{-4}\times19.1\times10^{10}} \end{gathered}[/tex]By simplifying,
[tex]\begin{gathered} l=\frac{10426.416}{2.9414\times10^6} \\ l=3544.7\times10^{-6}\text{ m} \\ l=3.54\times10^{-3}\text{ m} \\ l=3.54\text{ mm} \end{gathered}[/tex]Thus, the increase in the length of the rope is 3.54 mm.