Given the formula;
[tex]\bar{x}\pm z_{\frac{\frac{a}{2}}{2}}(\frac{\sigma}{\sqrt[]{n}})[/tex][tex]\begin{gathered} Given; \\ \bar{x}=18.21 \\ z-\text{score for 99\%= 2.576} \\ \sigma=5.92 \\ n=50 \end{gathered}[/tex]
Then, we have;
[tex]18.21\pm2.576(\frac{5.92}{\sqrt[]{50}})\ldots\ldots\ldots\ldots\ldots\text{equation 1}[/tex][tex]\begin{gathered} \text{ \$18.21}\pm\text{ \$2.16} \\ \text{ \$18.21-\$2.16=\$16.05} \\ \text{and} \\ \text{\$18.21+\$2.16=\$20.37} \end{gathered}[/tex]
Thus, the confidence interval is;
[tex]\text{ \$16.05}\leq\mu\leq\text{ \$20.37}[/tex]
First box: 18.21
Second box: 2.576
Third box: 5.92
Fourth box: 50
Fifth box: 16.05
Sixth box: 20.37