6) Find the speed a spherical raindrop would attain by falling from 4.00 km. Do this:a) In the absence of air dragb) In the presence of air dragc) Assume that the diameter of the drop is 3 mm and the density of the water is 0.98x10^3 kg/m^3

Respuesta :

We are asked to determine the velocity of a rain drop if it falls from 4 km.

To do that we will use the following formula:

[tex]2ah=v_f^2-v_0^2[/tex]

Where:

[tex]\begin{gathered} a=\text{ acceleration} \\ h=\text{ height} \\ v_f,v_0=\text{ final and initial velocity} \end{gathered}[/tex]

If we assume the initial velocity to be 0 we get:

[tex]2ah=v_f^2[/tex]

The acceleration is the acceleration due to gravity:

[tex]2gh=v_f^2[/tex]

Now, we take the square root to both sides:

[tex]\sqrt{2gh}=v_f[/tex]

Now, we substitute the values:

[tex]\sqrt{2(9.8\frac{m}{s^2})(4000m)}=v_f[/tex]

solving the operations:

[tex]280\frac{m}{s}=v[/tex]

Therefore, the velocity without air drag is 280 m/s.

Part B. we are asked to determine the velocity if there is air drag. To do that we will use the following formula:

[tex]F_d=\frac{1}{2}C\rho_{air}Av^2[/tex]

Where:

[tex]\begin{gathered} F_d=drag\text{ force} \\ C=\text{ constant} \\ \rho_{air}=\text{ density of air} \\ A=\text{ area} \\ v=\text{ velocity} \end{gathered}[/tex]

We need to determine the drag force. To do that we will use the following free-body diagram:

Since the velocity that the raindrop reaches is the terminal velocity and its a constant velocity this means that the acceleration is zero and therefore the forces are balanced:

[tex]F_d=mg[/tex]

Now, we determine the mass of the raindrop using the following formula:

[tex]m=\rho_{water}V[/tex]

Where:

[tex]\begin{gathered} \rho_{water}=\text{ density of water} \\ V=\text{ volume} \end{gathered}[/tex]

The volume is the volume of a sphere, therefore:

[tex]m=\rho_{water}(\frac{4}{3}\pi r^3)[/tex]

Since the diameter of the raindrop is 3 millimeters, the radius is 1.5 mm or 0.0015 meters. Substituting we get:

[tex]m=(0.98\times10^3\frac{kg}{m^3})(\frac{4}{3}\pi(0.0015m)^3)[/tex]

Solving the operations:

[tex]m=1.39\times10^{-5}kg[/tex]

Now, we substitute the values in the formula for the drag force:

[tex]F_d=(1.39\times10^{-5}kg)(9.8\frac{m}{s^2})[/tex]

Solving the operations:

[tex]F_d=1.36\times10^{-4}N[/tex]

Now, we substitute in the formula:

[tex]1.36\times10^{-4}N=\frac{1}{2}C\rho_{air}Av^2[/tex]

Now, we solve for the velocity:

[tex]\frac{1.36\times10^{-4}N}{\frac{1}{2}C\rho_{air}A}=v^2[/tex]

Now, we substitute the values. We will use the area of a circle:

[tex]\frac{1.36\times10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^3})(\pi r^2)}=v^2[/tex]

Substituting the radius:

[tex]\frac{1.36\cdot10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^{3}})(\pi(0.0015m)^2)}=v^2[/tex]

Solving the operations:

[tex]70.67\frac{m^2}{s^2}=v^2[/tex]

Now, we take the square root to both sides:

[tex]\begin{gathered} \sqrt{70.67\frac{m^2}{s^2}}=v \\ \\ 8.4\frac{m}{s}=v \\ \end{gathered}[/tex]

Therefore, the velocity is 8.4 m/s

Ver imagen EverlyB128262
RELAXING NOICE
Relax