Respuesta :
We are asked to determine the velocity of a rain drop if it falls from 4 km.
To do that we will use the following formula:
[tex]2ah=v_f^2-v_0^2[/tex]Where:
[tex]\begin{gathered} a=\text{ acceleration} \\ h=\text{ height} \\ v_f,v_0=\text{ final and initial velocity} \end{gathered}[/tex]If we assume the initial velocity to be 0 we get:
[tex]2ah=v_f^2[/tex]The acceleration is the acceleration due to gravity:
[tex]2gh=v_f^2[/tex]Now, we take the square root to both sides:
[tex]\sqrt{2gh}=v_f[/tex]Now, we substitute the values:
[tex]\sqrt{2(9.8\frac{m}{s^2})(4000m)}=v_f[/tex]solving the operations:
[tex]280\frac{m}{s}=v[/tex]Therefore, the velocity without air drag is 280 m/s.
Part B. we are asked to determine the velocity if there is air drag. To do that we will use the following formula:
[tex]F_d=\frac{1}{2}C\rho_{air}Av^2[/tex]Where:
[tex]\begin{gathered} F_d=drag\text{ force} \\ C=\text{ constant} \\ \rho_{air}=\text{ density of air} \\ A=\text{ area} \\ v=\text{ velocity} \end{gathered}[/tex]We need to determine the drag force. To do that we will use the following free-body diagram:
Since the velocity that the raindrop reaches is the terminal velocity and its a constant velocity this means that the acceleration is zero and therefore the forces are balanced:
[tex]F_d=mg[/tex]Now, we determine the mass of the raindrop using the following formula:
[tex]m=\rho_{water}V[/tex]Where:
[tex]\begin{gathered} \rho_{water}=\text{ density of water} \\ V=\text{ volume} \end{gathered}[/tex]The volume is the volume of a sphere, therefore:
[tex]m=\rho_{water}(\frac{4}{3}\pi r^3)[/tex]Since the diameter of the raindrop is 3 millimeters, the radius is 1.5 mm or 0.0015 meters. Substituting we get:
[tex]m=(0.98\times10^3\frac{kg}{m^3})(\frac{4}{3}\pi(0.0015m)^3)[/tex]Solving the operations:
[tex]m=1.39\times10^{-5}kg[/tex]Now, we substitute the values in the formula for the drag force:
[tex]F_d=(1.39\times10^{-5}kg)(9.8\frac{m}{s^2})[/tex]Solving the operations:
[tex]F_d=1.36\times10^{-4}N[/tex]Now, we substitute in the formula:
[tex]1.36\times10^{-4}N=\frac{1}{2}C\rho_{air}Av^2[/tex]Now, we solve for the velocity:
[tex]\frac{1.36\times10^{-4}N}{\frac{1}{2}C\rho_{air}A}=v^2[/tex]Now, we substitute the values. We will use the area of a circle:
[tex]\frac{1.36\times10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^3})(\pi r^2)}=v^2[/tex]Substituting the radius:
[tex]\frac{1.36\cdot10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^{3}})(\pi(0.0015m)^2)}=v^2[/tex]Solving the operations:
[tex]70.67\frac{m^2}{s^2}=v^2[/tex]Now, we take the square root to both sides:
[tex]\begin{gathered} \sqrt{70.67\frac{m^2}{s^2}}=v \\ \\ 8.4\frac{m}{s}=v \\ \end{gathered}[/tex]Therefore, the velocity is 8.4 m/s

