Solve for the angles of the triangle described below. Express all angles in degrees and round to the nearest hundredth.a = 6, b = 6,C = 8l

ANSWER:
A = 48.19°
B = 48.19°
C = 83.62°
STEP-BY-STEP EXPLANATION:
Given:
a = 6, b = 6, c = 8
We can calculate the angles by means of the law of cosines, just like this:
[tex]A=\cos^{-1}\left(\frac{b^2+c^2-a^2}{2bc}\right)[/tex]We apply in each case to calculate the 3 angles, as follows:
[tex]\begin{gathered} A=\cos^{-1}\left(\frac{6^2+8^2-6^2}{2\left(6\right)\left(8\right)}\right)=\cos^{-1}\left(\frac{2}{3}\right) \\ \\ A=48.19^{\circ\:} \\ \\ B=\cos^{-1}\left(\frac{6^2+8^2-6^2}{2\left(6\right)\left(8\right)}\right)=\cos^{-1}\left(\frac{2}{3}\right) \\ \\ B=48.19^{\operatorname{\circ}} \\ \\ C=\cos^{-1}\left(\frac{6^2+6^2-8^2}{2\left(6\right)\left(6\right)}\right)=\cos^{-1}\left(\frac{1}{9}\right) \\ \\ C=83.62^{\circ\:} \end{gathered}[/tex]Therefore, the angles are the following:
A = 48.19°
B = 48.19°
C = 83.62°