ANSWER:
$1.8
EXPLANATION:
Given:
A bag of 10 fortune cookies;
Five fortune cookies contain "$1 off"
Four contain "$2 off"
One contains "$5 off"
So the probability of selecting a "$1 off" cookie will be;
[tex]\begin{gathered} P(\text{\$1 }off\text{ }cookie)=\frac{5}{10} \\ =\frac{1}{2} \end{gathered}[/tex]
And the probability of selecting a "$2 off" cookie will be;
[tex]\begin{gathered} P(\text{\$2 }off\text{ }cookie)=\frac{4}{10} \\ =\frac{2}{5} \end{gathered}[/tex]
the probability of selecting a "$5 off" cookie will be;
[tex]\begin{gathered} P(\text{\$5 }off\text{ }cookie)=\frac{1}{10} \\ \end{gathered}[/tex]
We can determine the expectation of a selection as seen below;
[tex]\begin{gathered} Expectation=(1*\frac{1}{2})+(2*\frac{2}{5})+(5*\frac{1}{10}) \\ \\ =\frac{1}{2}+\frac{4}{5}+\frac{1}{2} \\ \\ =\frac{9}{5} \\ \\ =\text{ \$}1.8\text{ }off \end{gathered}[/tex]
So the expectation of a selection will be $1.8 off