Respuesta :

Given the functions

[tex]\begin{gathered} f(x)\text{ = x+2} \\ g(x)=x^2 \end{gathered}[/tex]

To find (g o f)(x):

(g o f)(x) is evaluated as g(f(x)).

This implies that the function f(x) is substituted into the g(x) function.

Thus,

[tex]\begin{gathered} \text{Substitute f(x) into g(x)} \\ g(f(x))=(x+2)^2 \\ open\text{ brackets} \\ g(f(x))=x^2+4x+4 \\ \end{gathered}[/tex]

Hence, the function (g o f)(x) is given as

[tex](g\circ f)(x)=x^2\text{ + 4x + 4}[/tex]

RELAXING NOICE
Relax