Answer:
The coordinates of D is;
[tex](3,-2)[/tex]Explanation:
The question can be illustrated diagramatically as;
The drawing is not to scale. it is just a way of explainuing the scenario.
To find the coordinates of the end point D(x,y).
Let us apply the mid point formula;
[tex]\begin{gathered} \bar{x}=\frac{x_1+x_2}{2} \\ x_1=\bar{2x}-x_2 \end{gathered}[/tex]The same applys to y coordinates.
Given;
[tex]\begin{gathered} E(4,3)=(\bar{x},\bar{y}) \\ F(5,8)=(x_2,y_2) \\ D=(x_1,y_1) \end{gathered}[/tex]Substituting we have;
[tex]\begin{gathered} x_1=\bar{2x}-x_2 \\ x_1=2(4)-5_{} \\ x_1=8-5 \\ x_1=3 \end{gathered}[/tex]Also,
[tex]\begin{gathered} y_1=\bar{2y}-y_2 \\ y_1=2(3)-8 \\ y_1=6-8 \\ y_1=-2 \end{gathered}[/tex]Therefore, the coordinates of D is;
[tex](3,-2)[/tex]