Answer:
Given that,
[tex]\begin{gathered} f(x)=x^2 \\ g(x)=x-6 \end{gathered}[/tex]To find,a. (fog)(x)
b. (gof)(x)
c. (fog)( - 1)
d. (gof)( - 1)
we know that,
The composition of a function is an operation where two functions say f and g generate a new function say h in such a way that h (x) = g (f (x)). It means here function g is applied to the function of x that is f(x).
It is represented as (gof)(x), i.e)
[tex](g\circ f)(x)[/tex]a)(fog)(x)
[tex](f\circ g)(x)=f(g(x))[/tex][tex]=f(x-6)[/tex]Put x=x-6 in the function f(x),
[tex]=(x-6)^2[/tex]we get,
[tex](f\circ g)(x)=(x-6)^2-----(1)[/tex]b)(gof)(x)
[tex](g\circ f)(x)=g(f(x))[/tex][tex]=g(x^2)[/tex]Put x=x^2 in the function g(x),
[tex]=x^2-6[/tex]we get,
[tex](g\circ f)(x)=x^2-6----(2)[/tex]c) (fog)( - 1)
using equation (1), Put x=-1, we get
[tex](f\circ g)(-1)=(-1-6)^2[/tex][tex]=(-7)^2=49[/tex][tex](f\circ g)(-1)=49[/tex]d) (gof)( - 1)
using the equation (2), Put x=-1, we get
[tex](g\circ f)(-1)=(-1)^2-6[/tex][tex]=1-6=-5[/tex][tex](g\circ f)(-1)=-5[/tex]