Given sin A=-5/and that angle Ais in Quadrant III, find the exact value oftan Ain simplest radical form using a rational denominator.

Given:
[tex]\sin A=-\frac{5}{\sqrt[]{61}}[/tex]the angle A is in QIII, So, the value of the tan A will be positive
To find tan A, we need to find the third side of the right-angle triangle that angle A fall inside it
From the sin A = opposite/hypotenuse
opposite side = 5
hypotenuse = √61
the adjacent side will be calculated using the Pythagorean theorem
[tex]adjacent=\sqrt[]{(\sqrt[]{61})^2-5^2}=\sqrt[]{61-25}=\sqrt[]{36}=6[/tex]The value of tan A will be as follows:
[tex]\begin{gathered} \tan A=\frac{opposite}{adjacent} \\ \\ \tan A=\frac{5}{6} \end{gathered}[/tex]