-5/2
Explanation
Step 1
find the slope of the line :
when 2 lines are perpendicular the product of their slopes equals -1,so
[tex]\begin{gathered} if\text{ line 1}\perp\text{ line 2} \\ then \\ slope_1*slope_2=-1 \end{gathered}[/tex]then, let
[tex]\begin{gathered} slope_1=given=\frac{2}{5} \\ slope_2=slope_2 \\ hence \\ \frac{2}{5}*slope_2=-1 \\ to\text{ solve, multiply both sides by 5/2} \\ \frac{2}{5}slope_2*\frac{5}{2}=-1*\frac{5}{2} \\ slope_2=-\frac{5}{2} \end{gathered}[/tex]therefore, the slope of the line we are looking for is -5/2
Step 2
now, use the point-slope formula to find the equation of the line, it says
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ where\text{ m is the slope } \\ (x_1,y_1)\text{ is a point from the line} \end{gathered}[/tex]a)let
[tex]\begin{gathered} slope=slope_2=-\frac{5}{2} \\ point=(5,-1) \end{gathered}[/tex]b) replace and solve for y to find the equation
[tex]\begin{gathered} y-y_{1}=m(x-x_{1}) \\ y-(-1)=-\frac{5}{2}(x-5) \\ y+1=-\frac{5}{2}x+\frac{25}{2} \\ subtract\text{ 1 in both sides} \\ y+1-1=-\frac{5}{2}x+\frac{25}{2}-1 \\ y=-\frac{5}{2}x+\frac{23}{2} \end{gathered}[/tex]therefore, the equation of the line is
[tex]y=-\frac{5}{2}x+\frac{23}{2}[/tex]
and the slope is
[tex]-\frac{5}{2}[/tex]the slope of the line we are looking for is -5/2