If the figure is divided into 6 rectangles, the total area will be as follows:
A= area
Rectangle 1 and 3:
b= 8cm
h= 4cm
[tex]\begin{gathered} A_{R1}=\text{ b}\times h \\ A_{R1}=8\times4\text{ = 32} \\ A_{R1}=32\operatorname{cm} \\ As\text{ there are two with the same mesures:} \\ A_{R1,3}=2\times32\operatorname{cm}=64\operatorname{cm} \end{gathered}[/tex]Rectangle 2 and 4:
b= 8cm
h= 6cm
[tex]\begin{gathered} A_{R2}=\text{ b}\times h \\ A_{R2}=8\times6\text{ = }48 \\ A_{R2}=48\operatorname{cm} \\ As\text{ there are two with the same mesures:} \\ A_{R2,4}=\text{ 2}\times48\operatorname{cm}=96cm^2 \end{gathered}[/tex]Lateral Rectangle:
b= 6cm
h= 4cm
[tex]\begin{gathered} A_{LR}=\text{ b}\times h \\ A_{LR}=6\times4\text{ = }24 \\ A_{LR}=24\operatorname{cm} \\ As\text{ there are two lateral rectangles:} \\ A_{LR}=2\times24\operatorname{cm}=48\operatorname{cm} \end{gathered}[/tex]Total Area (TA):
[tex]\begin{gathered} A_T=A_{R1,3}+A_{R2,4}+A_{LR} \\ A_T=64\operatorname{cm}+96\operatorname{cm}+48\operatorname{cm} \\ A_T=208\operatorname{cm} \end{gathered}[/tex]