Complete the table for the following functiony=(1/3)^x*imageGraph the function and describe what the graph looks like.A. Increases in Quadrant Ib. Increases from left to rightc. Decreases from left to rightd. Decreases in Quadrant III

Complete the table for the following functiony13ximageGraph the function and describe what the graph looks likeA Increases in Quadrant Ib Increases from left to class=

Respuesta :

Given:-

[tex]y=(\frac{1}{3})^x[/tex]

To graph the image.

So now we find the values of y when the value of x is -3,-2,-1,0,1,2,3.

When x is -3. we get,

[tex]\begin{gathered} y=(\frac{1}{3})^{-3} \\ y=(3)^3 \\ y=27 \end{gathered}[/tex]

So the required value is 27.

when x is -2. we get,

[tex]\begin{gathered} y=(\frac{1}{3})^{-2} \\ y=(3)^2 \\ y=9 \end{gathered}[/tex]

So the required value is 9.

When x is -1. we get,

[tex]\begin{gathered} y=(\frac{1}{3})^{-1} \\ y=(3)^1 \\ y=3 \end{gathered}[/tex]

So the required value is 3.

When x is 0. we get,

[tex]\begin{gathered} y=(\frac{1}{3})^0 \\ y=0 \end{gathered}[/tex]

So the required value is 0.

When x is 1. we get,

[tex]\begin{gathered} y=(\frac{1}{3})^1 \\ y=\frac{1}{3} \end{gathered}[/tex]

So the required value is 1/3.

When x is 2. we get,

[tex]\begin{gathered} y=(\frac{1}{3})^2 \\ y=\frac{1}{9} \end{gathered}[/tex]

So the required value is 1/9.

When x is 3. we get,

[tex]\begin{gathered} y=(\frac{1}{3})^3 \\ y=\frac{1}{27} \end{gathered}[/tex]

So the required value is 1/27.

So the graph looks like,

This is the graph and it decreases from left to right.

Ver imagen TeddieX759777
RELAXING NOICE
Relax