Given:
Current population = 2900
rate of increase = 10.7% each year
The exponential growth formula is defined as:
[tex]\begin{gathered} P\text{ = P}_0e^{rt} \\ Where\text{ P}_0\text{ is the initial population} \\ r\text{ is \% growth rate} \\ and\text{ t is time in years} \end{gathered}[/tex]Substituting the given values:
[tex]P(x)\text{ = 2900e}^{0.107x}[/tex]Hence, the exponential model is:
[tex]P(x)\text{ = 2900e}^{0.107x}[/tex]The population in 10 years
We substitute 10 for x in the equation above and solve:
[tex]\begin{gathered} P(x=10)\text{ = 2900e}^{0.107\times10} \\ =\text{ 8454.6005} \\ \approx\text{ 8455 students} \end{gathered}[/tex]Hence, the population of the students after 10 years would be 8455 students