Respuesta :

[tex]f^{\prime}(a)=\lim _{x\to a}\frac{f(x)-f(a)}{x-a}[/tex]

Procedure:

0. Reeplacing the function

[tex]f^{\prime}(a)=\lim _{x\to a}\frac{(3x^2+x)-(3a^2+a)}{x-a}[/tex][tex]f^{\prime}(a)=\lim _{x\to a}\frac{x(3x+1)-a(3a^{}+1)}{x-a}[/tex][tex]f^{\prime}(a)=\lim _{x\to a}\frac{-(x-a)(-3x-3a-1)}{x-a}[/tex][tex]f^{\prime}(a)=\lim _{x\to a}(3x+3a+1)[/tex][tex]f^{\prime}(a)=3a+3a+1[/tex]

Answer:

[tex]f^{\prime}(a)=6a+1[/tex]

RELAXING NOICE
Relax