Given data:
The amount invested ( principal) is
[tex]P=\text{ \$2,000}[/tex]The interest rate given is
[tex]r=3.4\%[/tex]The number of years is
[tex]t=4\text{ years}[/tex]The number of times compounded is quarterly
A quarterly event happens four times a year, at intervals of three months.
[tex]n=4[/tex]Concept:
The formula to calculate the amount compounded is given below as
[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt} \\ \text{Where,} \\ A=\text{amount} \\ P=\text{principal} \\ r=\text{rate} \\ n=\text{ number of times compounded} \\ t=\text{ number of years} \end{gathered}[/tex]By substituting the values above in the formula, we will have
[tex]\begin{gathered} A=P(1+\frac{r}{n})^{nt} \\ A=2,000(1+\frac{3.4}{400})^{4\times4} \end{gathered}[/tex]By solving the equation above, we will have
[tex]\begin{gathered} A=2,000(1+\frac{3.4}{400})^{4\times4} \\ A=2,000(1+0.0085)^{16} \\ A=2000(1.0085)^{16} \\ A=2,290.05 \end{gathered}[/tex]Hence,
The final answer = $2,290.05