Respuesta :
Given:
Heron's formula
Sol:
Heron's formula:
for finding the area of a triangle in terms of the lengths of its sides. In symbols, if a, b, and c are the lengths of the sides
In Heron's formula is:
[tex]S=\frac{a+b+c}{2}[/tex]Heron's formula to find the area of a triangle is:
So, the area is:
[tex]\text{ Area }=\sqrt{s(s-a)(s-b)(s-c)}[/tex]Area of triangle is :
[tex]\begin{gathered} =\frac{1}{2}\times\text{ base }\times\text{ height} \\ \\ =\frac{1}{2}\times b\times h \end{gathered}[/tex]Use cosine law then:
[tex]\begin{gathered} A=\frac{1}{2}ab\sin\gamma \\ \\ =\frac{1}{4}\sqrt{4a^2b^2-(a^2+b^2-c^2)^2} \\ \\ =\frac{1}{4}\sqrt{(2ab-(a^2+b^2-c^2)(2ab+(a^2+b^2-c^2)} \\ \\ \end{gathered}[/tex]Solve then:
[tex]\begin{gathered} =\frac{1}{4}\sqrt{(c^2-(a-b)^2)((a+b)^2-c^2)} \\ \\ =\sqrt{\frac{(c+(a-b))(c-(a-b))((a+b)-c)((a+b))+c)^{16}}{16}} \\ \\ =\sqrt{\frac{(b+c-a)}{2}\frac{(a+c-b)}{2}\frac{(a+b-c)}{2}\frac{(a+b+c}{2}} \\ \\ =\sqrt{s(s-a)(s-b)(s-c)} \end{gathered}[/tex]In cosine law.
Let us prove the result using the law of cosines:
Let a, b, c be the sides of the triangle and
[tex]\alpha,\beta,\gamma[/tex]are opposite angle to the side.
We know that low of cosine is:
[tex]\begin{gathered} \cos\gamma=\frac{a^2+b^2-c^2}{2ab} \\ \\ \text{ And} \\ \\ \sin\gamma=\sqrt{1-\cos^2\gamma} \\ \\ =\frac{\sqrt{4a^2b^2-(a^2+b^2-c^2)}}{2ab} \end{gathered}[/tex]Here base of triangle = a
Height is:
[tex]H=\sin\gamma[/tex]
