Respuesta :

[tex]y=-\frac{1}{2}x-3[/tex]

Explanation

when you know the slope and a passing point of the line, you can find the equation of the line by replacing in the slope-point equation ,it is given by:

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \text{where } \\ m\text{ is the slope} \\ \text{and} \\ (x_1,y_1)\text{ is a point from the line } \end{gathered}[/tex]

then

Step 1

a)Let

[tex]\begin{gathered} \text{slope}=-\frac{1}{2} \\ \text{ Point=(4,-5)} \end{gathered}[/tex]

now,replace and solve for y

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-(-5)=-\frac{1}{2}(x-4) \\ y+5=-\frac{1}{2}x+\frac{4}{2} \\ y+5=-\frac{1}{2}x+2 \\ \text{subtract 5 in both sides} \\ y+5-5=-\frac{1}{2}x+2-5 \\ y=-\frac{1}{2}x-3 \end{gathered}[/tex]

therefore, the answer is

[tex]y=-\frac{1}{2}x-3[/tex]

I hope this helps you

ACCESS MORE
EDU ACCESS