Respuesta :

Given the expression:

[tex](2x^2y^3+y)^7[/tex]

We will find the 4th term using the binomial theorem

the general form of the binomial theorem will be:

[tex](a+b)^n=^nC^{}_r\cdot a^{n-r}\cdot b^r[/tex]

So, n = 7, r = 3, a = 2x²y³, b = y

Substitute into the general form

So, the 4th term will be:

[tex]\frac{7!}{3!4!}\cdot(2x^2y^3)^4\cdot y^3=35\cdot2^6\cdot x^8\cdot y^{12}\cdot y^3=560x^8y^{15}[/tex]

So, the answer will be option 3

RELAXING NOICE
Relax