Given:
[tex]a_1=58,\text{ }a_n=-7,\text{ and }n=26[/tex]Required:
We have to find the arithmetic series.
Explanation:
From the given data if we can find the common difference denoted by d then we can easily find the required arithmetic series.
We use the formula
[tex]a_n=a_1+(n-1)d[/tex]Now we put the given values in the above equation to find the value of d.
[tex]\begin{gathered} -7=58+(26-1)d \\ \Rightarrow-7-58=25d \end{gathered}[/tex][tex]\begin{gathered} \Rightarrow25d=-65 \\ \\ \Rightarrow d=-\frac{65}{25} \end{gathered}[/tex][tex]\Rightarrow d=-2.6[/tex]Then the required arithmetic series is
[tex]a_1,a_1+d,a_1+2d,a_1+3d,.\text{ }.\text{ }.\text{ },a_1+25d[/tex][tex]\begin{gathered} =58,\text{ }58-2.6,\text{ }58-5.2,\text{ }58-7.8,\text{ }.\text{ }.\text{ }.,\text{ }58-65 \\ =58,\text{ }55.4,\text{ }52.8,\text{ }50.2,\text{ }.\text{ }.\text{ }.\text{ },-7 \end{gathered}[/tex]The formula for finding the sum of the arithmetic series is
[tex]S_n=\frac{n}{2}(a_1+a_n)[/tex]Then the sum of the above series is
[tex]\frac{26}{2}(58-7)=13\times51=663[/tex]Final answer:
Hence the arithmetic series is
[tex]\begin{equation*} 58,\text{ }55.4,\text{ }52.8,\text{ }50.2,\text{ }.\text{ }.\text{ }.\text{ },-7 \end{equation*}[/tex]And the sum of the series is
[tex]663[/tex]