Respuesta :

Recall that the magnitude and direction of a vector:

[tex]\vec{v}=ai+bj[/tex]

are given by the following formulas:

[tex]\begin{gathered} \vec{|v}|=\sqrt{a^2+b^2}, \\ \theta=tan^{-1}(\frac{b}{a}). \end{gathered}[/tex]

Substituting

[tex]\begin{gathered} a=2, \\ b=8, \end{gathered}[/tex]

in the above formulas, we get:

[tex]\begin{gathered} \vec{|v}|=\sqrt{2^2+8^2}=\sqrt{4+64}=\sqrt{68}. \\ \theta=\tan^{-1}(\frac{8}{2})=\tan^{-1}(4). \end{gathered}[/tex]

Finally, we get:

[tex]\begin{gathered} \vec{|v}|=2\sqrt{17}, \\ \theta=75.9638^{\circ}. \end{gathered}[/tex]

Answer: (|v|=2√17, θ=75.9638°)

[tex]\begin{gathered} \vec{\lvert\rvert v}\lvert\rvert=2\sqrt{17}, \\ \theta=75.9638^{\operatorname{\circ}}. \end{gathered}[/tex]

RELAXING NOICE
Relax