Respuesta :

We just need to apply some trigonometric identities:

[tex]\sin (45)=\frac{s}{13\sqrt[]{2}}\Rightarrow s=13\sqrt[]{2}\sin (45)=13=w[/tex][tex]\cos (45)=\frac{x}{13\sqrt[]{2}}\Rightarrow x=13\sqrt[]{2}\cos (45)=13=v[/tex]

Then we have until now s=w=x=v=13, lets continue now with the other ones

[tex]20-w=y-s\Rightarrow20-13=y-13\Rightarrow y=20[/tex]

Finally, to find z we apply the tangent identity:

[tex]\tan (30)=\frac{13}{z-20}\Rightarrow z=\frac{13}{\tan (30)}+20=20+13\sqrt[]{3}[/tex]

then z=42.5166605 aproximately

RELAXING NOICE
Relax