if vectors u=4, v=6 and w=3 prove that(⃗ × ) × ⃗ = ⃗ × ( × ⃗ )(they are supposed to all have arrows over them but it’s not fully working)

if vectors u4 v6 and w3 prove that they are supposed to all have arrows over them but its not fully working class=

Respuesta :

Given:

[tex](\vec{u}\times\vec{v})\times\vec{w}=\vec{u}\times\vec{(v}\times\vec{w})[/tex]

u has direction ( 1, 0,0)

v has directions (1, 1,0)

w has directions(1, -2,1)

[tex](0,0,1)\times\vec{w}\Rightarrow\begin{bmatrix}{i} & {j} & {k} \\ {0} & {0} & {1} \\ {1} & {-2} & {1}\end{bmatrix}\Rightarrow i(0--2)-j(0-1)+k(0)\Rightarrow(2,1,0)[/tex]

So (2,1,0) is the left hand side. The cross product gives us a direction between two vectors or the coordiantes it pointing to.

The right hand side:

[tex]\vec{u}\times(\vec{v}\times\vec{w})\Rightarrow\vec{u}\times\begin{bmatrix}{i} & {j} & {k} \\ {1} & {1} & {0} \\ {1} & {-2} & {1}\end{bmatrix}\Rightarrow\vec{u}\times(i\begin{bmatrix}{1} & {0} \\ {-2} & {1}\end{bmatrix}-j\begin{bmatrix}{1} & {0} \\ {1} & {1}\end{bmatrix}+k\begin{bmatrix}{1} & {1} \\ {1} & {-2}\end{bmatrix})[/tex][tex]\vec{u}\times(i(1-0)-j(1-0)+k(-2-1))\Rightarrow\vec{u}\times(1,-1,-3)[/tex][tex]\vec{u}\times(1,-1,-3)\Rightarrow\begin{bmatrix}{i} & {j} & {k} \\ {1} & {0} & {0} \\ {1} & {-1} & {-3}\end{bmatrix}\Rightarrow i\begin{bmatrix}{0} & {0} \\ {-1} & {-3}\end{bmatrix}-j\begin{bmatrix}{1} & {0} \\ {1} & {-3}\end{bmatrix}+k\begin{bmatrix}{1} & {0} \\ {1} & {-1}\end{bmatrix}[/tex][tex]i(0-0)-j(-3-0)+k(-1-0)\Rightarrow(0,3,-1)[/tex]

So using (u x v) x w = u x (v x w) on the left hand side we got (2,1,0) and the right hand side we got (0,3,-1)

Therefore we have (2,1,0) = (0,3,-1) which can't be possible.

Answer:

[tex](\vec{u}\times\vec{v})\times\vec{w}\ne\vec{u}\times(\vec{v}\times\vec{w})\text{ because \lparen2,1,0\rparen }\ne\text{ \lparen0,3,-1\rparen from the example used.}[/tex]

Ver imagen RaifL505092
ACCESS MORE
EDU ACCESS
Universidad de Mexico