Answer:
mean = 80.5
standard deviation = 9.86
Given:
79, 88, 65, 90
To find the mean, we will use the following formula:
[tex]\mu=\frac{\Sigma x}{N}[/tex]Where:
μ = mean
Σx = sum of all data points
N = number of data points
Using the given data, we know that:
Σx = 79+88+65+90
N = 4
[tex]\mu=\frac{79+88+65+90}{4}[/tex][tex]\mu=80.5[/tex]Next, finding the standard deviation will be easier if we find the variance first. To find the variance, we will use the following formula:
[tex]\sigma^2=\frac{\Sigma(x-\mu)^2}{N}[/tex]And using the same data as earlier,
[tex]\sigma^2=97.25[/tex]And then, to find the standard deviation, we are just going to get the square root of the variance
[tex]\sigma=\sqrt[]{\sigma^2}[/tex][tex]\sigma=\sqrt[]{97.25^{}}[/tex][tex]\sigma=9.86[/tex]Answer:
mean = 80.5
standard deviation = 9.86