Respuesta :

Answer:

mean = 80.5

standard deviation = 9.86

Given:

79, 88, 65, 90

To find the mean, we will use the following formula:

[tex]\mu=\frac{\Sigma x}{N}[/tex]

Where:

μ = mean

Σx = sum of all data points

N = number of data points

Using the given data, we know that:

Σx = 79+88+65+90

N = 4

[tex]\mu=\frac{79+88+65+90}{4}[/tex][tex]\mu=80.5[/tex]

Next, finding the standard deviation will be easier if we find the variance first. To find the variance, we will use the following formula:

[tex]\sigma^2=\frac{\Sigma(x-\mu)^2}{N}[/tex]

And using the same data as earlier,

[tex]\sigma^2=97.25[/tex]

And then, to find the standard deviation, we are just going to get the square root of the variance

[tex]\sigma=\sqrt[]{\sigma^2}[/tex][tex]\sigma=\sqrt[]{97.25^{}}[/tex][tex]\sigma=9.86[/tex]

Answer:

mean = 80.5

standard deviation = 9.86

RELAXING NOICE
Relax