given Given AB‾∥DC‾AB ∥ DC and BC‾∥AD‾BC ∥ AD , prove △ABC≅△CDA△ABC≅△CDA by filling out the flowchart below.

Given:
[tex]AB||DC,BC\mleft\Vert AD\mright?[/tex]To show that,
[tex]\Delta ABC\cong\Delta CDA[/tex]First box:
[tex]AB||DC(\text{Given)}[/tex]Below box to the first box:
[tex]\angle BAC=\angle DCA(Parallel\text{ lines cut by the transversal form congruent alternate interior angles)}[/tex]Second box:
[tex]BC\Vert AD(\text{Given)}[/tex]Below box to the second box:
[tex]\angle DAC=\angle BCA(Parallel\text{ lines cut by the transversal form congruent alternate interior angles}[/tex]Third box in the second row:
[tex]AC=AC\text{ (common side)}[/tex]Last box:
So, using ASA congruence axiom,
[tex]\Delta ABC\cong\Delta CDA[/tex]