Answer:
(-3,1)
Explanation:
Given the endpoints of a line segment: (-3,4) and (-3,-2)
The midpoint is obtained using the formula below:
[tex]M(x,y)=(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2})[/tex][tex]\begin{gathered} $\mleft(x_1,y_1\mright)=\mleft(-3,4\mright)$ \\ (x_2,y_2)=\mleft(-3,-2\mright) \end{gathered}[/tex]Substituting the points into M(x,y), we have:
[tex]\begin{gathered} M(x,y)=(\dfrac{-3+(-3)}{2},\dfrac{4+(-2)}{2}) \\ =(\dfrac{-3-3}{2},\dfrac{4-2}{2}) \\ =(\dfrac{-6}{2},\dfrac{2}{2}) \\ =(-3,1) \end{gathered}[/tex]The midpoint of the segment is (-3, 1).