Respuesta :
Answer:
Explanation:
We know from Newton's second law that
[tex]F=ma[/tex]Now, Newton's law of universal gravitation says
[tex]F=G\frac{mM_{}}{r^2}[/tex]where m = mass of object 1, M = mass of object 2, and r = distance between the objects. '
Now, equating the two equations above gives
[tex]ma=G\frac{mM}{r^2}[/tex]Now, dividing both sides by m gives
[tex]\boxed{a=G\frac{M}{r^2}}[/tex]This is the value of the acceleration due to gravity due to an object of mass M at a distance r away from another object.
Now, near earth, the above equation gives us a = g = 9.8 m/s^2. This can be obtained by substituting M = 5.97 * 10^24 kg, r = earth radius = 6378 km, and G = 6.67 * 10^ -11.
[tex]a=(6.67\cdot10^{-11})\cdot\frac{5.97\cdot10^{24}}{(6371\cdot1000)^2}[/tex][tex]\Rightarrow a=\frac{6.67\cdot10^{-11}\cdot5.97\cdot10^{24}}{(6371\cdot10^3)^2}[/tex][tex]\Rightarrow a=\frac{6.67\cdot5.97\cdot\cdot10^{-11}\cdot10^{-11}\cdot10^{24}}{6371^2\cdot10^6^{}}[/tex][tex]\Rightarrow(\frac{6.67\cdot5.97}{6371^2})\cdot\frac{10^{-11}\cdot10^{24}}{10^6}[/tex][tex]\Rightarrow a=\frac{6.67\cdot5.97}{(6.371\cdot10^3)^2}\cdot\frac{10^{-11}\cdot10^{24}}{10^6}[/tex][tex]\Rightarrow a=\frac{6.67\cdot5.97}{6.371^2\cdot10^6}\cdot\frac{10^{-11}\cdot10^{24}}{10^6}[/tex][tex]\Rightarrow a=\frac{6.67\cdot5.97}{6.371^2}\cdot\frac{10^{-11}\cdot10^{24}}{10^6\cdot10^6}[/tex][tex]a\approx9.81m/s^2[/tex]which when rounded to the nearest tenth gives
[tex]\boxed{a=9.8m/s^2\text{.}}[/tex]