Let x be the number of questions worth 5 points and y be the number of questions worth 2 points.
[tex]\begin{gathered} x+y=29\quad eq.1 \\ 5x+2y=100\quad eq.2 \end{gathered}[/tex]Let us solve this system of equations using the substitution method.
[tex]\begin{gathered} x+y=29 \\ y=29-x\quad eq.1 \end{gathered}[/tex]Substitute eq. 1 into eq. 2
[tex]\begin{gathered} 5x+2y=100\quad eq.2 \\ 5x+2(29-x)=100 \\ 5x+58-2x=100 \\ 5x-2x=100-58 \\ 3x=42 \\ x=\frac{42}{3} \\ x=14 \end{gathered}[/tex]So, there are 14 questions worth 5 points.
Now substitute the value of x into eq. 1 to get the value of y
[tex]\begin{gathered} y=29-x\quad eq.1 \\ y=29-14 \\ y=15 \end{gathered}[/tex]So, there are 15 questions worth 2 points.
Therefore, the correct answer is
14 questions worth 5 points and 15 questions worth 2 points.