[tex]\bf f(x)=\cfrac{x^{\cfrac{}{}\boxed{2}}+1}{x^{\cfrac{}{}\boxed{1}}-1}
\\\\
\textit{thus, the oblique asymptote is at }x^2+1 \div x-1
\\\\
\begin{array}{llllllll}
&&x+1\\
&&--------\\
x-1&|&\quad x^2+0x+1\\
&&-(x^2-x)\\
&&\qquad \quad x+1\\
&&\qquad -(x-1)\\
&&\qquad \qquad \quad 2
\end{array}\\\\
-----------------------\\\\
\textit{so, we have a quotient of x+1, and a remainder of 2}\\
\textit{our slant asymptote is }x+1[/tex]