Solution:
Let X be the number on each ball. The probability distribution is:
now, the mean is
[tex]\mu=\sum_^X\text{ . P\lparen X})[/tex]According to the data, this Mean would be:
[tex]\mu=\sum_^X\text{ . P\lparen X})\text{ }=\text{ 3 . }\frac{2}{5}\text{ }+4\text{ . }\frac{1}{5}\text{ }+5\text{ . }\frac{2}{5}\text{ }=4[/tex]So, we get that the Mean is:
[tex]\mu=4[/tex]Now, the variance is
[tex]\sigma\text{ }=\text{ }\sum_^\lbrack X^2\text{ . P\lparen X})\rbrack-\mu^2[/tex]According to the data of the problem, we get that the variance is:
[tex]\sigma=\text{ }\lbrack\text{3}^2\text{ . }\frac{2}{5}\text{ }+4^2\text{ . }\frac{1}{5}\text{ }+5^2\text{ . }\frac{2}{5}\text{ }\rbrack\frac{}{}-4^2[/tex]this is equivalent to:
[tex]\sigma=\frac{4}{5}[/tex]Thus, the standard deviation would be:
[tex]\sqrt{\frac{4}{5}}=0.894[/tex]Then, we can conclude that the correct answer is:
Variance:
[tex]\frac{4}{5}[/tex]Standard deviation:
[tex]0.894[/tex]