Suppose the triangles shown are similar with angle A = angle D, angle B = angle E, and angle C = angle F. Answer the question.

Similar triangles have the same ratio between corresponding sides:
[tex]\frac{AB}{DE}=\frac{BC}{EF}=\frac{CA}{FD}[/tex]We have the sizes of the sides:
• AB = 17
,• BC = 22
,• CA = 2x-7
,• DE = 34
,• EF = 44
,• FD = 2x+4
We use the ratio property to find x:
[tex]\begin{gathered} \frac{BC}{EF}=\frac{CA}{FD} \\ \frac{22}{44}=\frac{2x-7}{2x+4} \\ \frac{1}{2}=\frac{2x-7}{2x+4} \end{gathered}[/tex]And now we clear x:
[tex]\begin{gathered} \frac{1}{2}=\frac{2x-7}{2x+4} \\ 2x+4=2(2x-7) \\ 2x+4=4x-14 \\ x(2-4)=-14-4 \\ x=\frac{-14-4}{2-4}=\frac{-18}{-2}=9 \end{gathered}[/tex]Now that we have x = 9, we can find the lenght of side DF (DF and FD are the same side):
[tex]FD=2x+4=2\cdot9+4=18+4=22[/tex]The answer is option C, FD = 22