Given:
The amount after 10 years and 8 months, A=$750.00.
The rate of interest, r =2 1/2 %.
The period of time, t =10 years and 8 months.
The interest is compounded daily
Required:
We need to find the intial investment amount.
Explanation:
Conver the period of time to years.
[tex]1\text{ year =12 months.}[/tex][tex]\frac{8}{12}\text{ year =8 months.}[/tex][tex]10\text{ +}\frac{8}{12}\text{ years =10 years and 8 months.}[/tex][tex]10\text{ +}\frac{8}{12}\text{ years =10 years and 8 months.}[/tex][tex]10\text{ }\times\frac{12}{12}\text{+}\frac{8}{12}\text{ years =10 years and 8 months.}[/tex][tex]\frac{120}{12}\text{+}\frac{8}{12}\text{ years =10 years and 8 months.}[/tex][tex]\frac{120+8}{12}\text{ years =10 years and 8 months.}[/tex][tex]\frac{128}{12}\text{ years =10 years and 8 months.}[/tex]We get t =128/12.
The annual interest rate is
[tex]r=2.5\text{ \%.}[/tex][tex]r=0.025.[/tex]The number of days in a year = 365 days.
The money is compounded daily, n=365.
Consider the formula to find the amount in compound interest.
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]Substitute A =750, r=0.025, n=365 and t =128/12 in the formula.
[tex]750=P(1+\frac{0.025}{365})^{365\times\frac{128}{12}}[/tex][tex]750=P(1+\frac{0.025}{365})^{3893.333}[/tex][tex]P=\frac{750}{(1+\frac{0.025}{365})^{3893.333}}[/tex][tex]P=574.4516[/tex]Final answer:
The initial amount is $ 574.45.