1 [how much money do they have together. write as a fraction and a decimal

Given data:
[tex]\begin{gathered} \text{Iris has} \\ 1\frac{3}{5}\text{ dollars} \end{gathered}[/tex][tex]\begin{gathered} \text{Violet has} \\ 2\frac{5}{10}\text{ dollars} \end{gathered}[/tex]Together, they will have:
[tex]\text{Iris}+\text{Violet}=1\frac{3}{5}+2\frac{5}{10}[/tex]step 1=> convert to improper fraction
[tex]\begin{gathered} 1\frac{3}{5}=\frac{8}{5} \\ \\ 2\frac{5}{10}=\frac{25}{10} \end{gathered}[/tex]step 2: sum the improper fractions
[tex]\frac{8}{5}+\frac{25}{10}[/tex]To do this, we will find the lowest common multiple of the denominators
The denominators are 5 and 10
The lowest common multiple of 5 and 10 = 10
Step 3:Express each denominator so they will have the same lowest common multiple as shown below
[tex]\begin{gathered} \frac{8}{5}=\frac{16}{10} \\ \frac{25}{10}=\frac{25}{10} \end{gathered}[/tex][tex]\frac{8}{5}+\frac{25}{10}=\frac{16}{10}+\frac{25}{10}[/tex]Since they now have a common denominator which is their lowest common multiple, we can easily sum the fractions up
[tex]\frac{16}{10}+\frac{25}{10}=\frac{16+25}{10}=\frac{41}{10}[/tex]The answers are:
Expressed as a fraction:
[tex]\frac{41}{10}[/tex]Expressed as a mixed fraction:
[tex]4\frac{1}{10}[/tex]Expressed as a decimal:
[tex]4.1[/tex]