Respuesta :

Given the list of values:

[tex]5,18,21,28,24,3,18,18[/tex]

The corresponding frequency table is:

3: 1

5: 1

18: 3

21: 1

24: 1

28: 1

From this, we can say that the mode is:

[tex]\text{Mode }=18[/tex]

There are 8 values. Ordering the list:

[tex]3,5,18,18,18,21,24,28[/tex]

The position of the median can be calculated using the formula:

[tex]P=\frac{n}{2}[/tex]

Where n is the number of values (n = 8). If p is a whole number, then the median is the semi-sum of the data at positions P and P+1. If it is not a whole number, the position of the median is int(P)+1, where int(P) is the integer part of P. Now, using the previous equation:

[tex]P=\frac{8}{2}=4[/tex]

The values at positions 4 and 5 are 18 and 18, so the median is:

[tex]\begin{gathered} \text{Median }=\frac{18+18}{2}=\frac{36}{2} \\ \Rightarrow\text{Median }=18 \end{gathered}[/tex]

Finally, to find the mean (rounded to 1 decimal place), we use the value of n:

[tex]\begin{gathered} \text{Mean }=\frac{5+18+21+28+24+3+18+18}{8}=\frac{135}{8} \\ \text{Mean }=16.9 \end{gathered}[/tex]

RELAXING NOICE
Relax