ANSWER:
66.8 m
STEP-BY-STEP EXPLANATION:
Given:
Area of mirror = 28.02 cm²
We make a sketch of the situation in order to solve the problem:
We calculate the height as follows:
[tex]\begin{gathered} h=\sqrt{28.02}=5.3\text{ cm} \\ \\ \text{ therefore:} \\ \\ AC=\frac{5.3}{2}=2.65\text{ cm } \\ \\ \text{ For ABC:} \\ \\ \tan\theta=\frac{2.65}{40.26} \end{gathered}[/tex]Now, we determine for AEF that it has the same angle as ABC, like this:
[tex]\begin{gathered} \tan\theta=\frac{EF}{EA}=\frac{\frac{890}{2}-2.65}{d} \\ \\ \text{ Therefore:} \\ \\ \frac{2.65}{40.26}=\frac{\frac{890}{2}-2.65}{d} \\ \\ \text{ we solve for d:} \\ \\ \:d=\frac{40.26}{2.65}\cdot\left(\frac{890}{2}-2.65\right)\: \\ \\ d=6720.38\text{ cm} \\ \\ d=67.2\text{ m} \\ \\ \text{ Therefore:} \\ \\ D=67.2-0.4026=66.7974\equiv66.8\text{ m} \end{gathered}[/tex]It is located 66.8 meters from the pole