Define a system of equations that describes the given situation.
Take x and y as the numbers.
[tex]\begin{gathered} x+y=42 \\ x-y=4 \end{gathered}[/tex]Solve the system:
[tex]\begin{gathered} x+y=42 \\ x=42-y \\ x-y=4 \\ x=4+y \\ 42-y=4+y \\ 42-4=2y \\ 38=2y \\ y=\frac{38}{2} \\ y=19 \end{gathered}[/tex]Use the value of y to find the value of x.
[tex]\begin{gathered} x=4+y \\ x=4+19 \\ x=23 \end{gathered}[/tex]Which means that the numbers are 23 and 19.