Respuesta :

Given a principal of P and a depreciation rate of r %,

after n years the new amount A is given by

[tex]A=P(1-r^{})^n[/tex]

In this case,

[tex]A=\text{ \$2500 r = 12\% n = 4years}[/tex]

Then, we have

[tex]\begin{gathered} 2500=P(1-0.12^4) \\ \text{ Which implies that } \\ P=\frac{2500}{(1-0.12)^4}=\frac{2500}{0.88^4}=\frac{2500}{0.5997}=\text{ \$4169} \end{gathered}[/tex]

Hence the cost brand new is $4169

RELAXING NOICE
Relax