Given
[tex]f\mleft(x\mright)=x^2-3x+2[/tex]Find
Rewrite it into standard form and identify vertex and all its intercepts.
Explanation
standard form =
[tex]f(x)=a(x-h)^2+k[/tex]where (h , k) be the vertex
so ,
[tex]\begin{gathered} f(x)=x^2-3x+2 \\ x^2-3x+\frac{9}{4}=-2+\frac{9}{4} \\ (x-\frac{3}{2})^2=\frac{1}{4} \\ f(x)=(x-\frac{3}{2})^2-\frac{1}{4} \\ \end{gathered}[/tex]so vertex be
[tex](\frac{3}{2},-\frac{1}{4})[/tex]for intercept put f(x) = 0
[tex]\begin{gathered} x^2-3x+2=0 \\ (x-1)(x-2)=0 \\ x=1,2 \end{gathered}[/tex]so , x - intercept = (1 , 0) and (2 , 0)
for y- intercept put x =0
[tex]\begin{gathered} y=(0)^2-3(0)+2 \\ y=2 \end{gathered}[/tex]y - intercept (0 , 2)
Final Answer
Therefore , vertex is (3/2,-1/4)
x - intercept = (1 , 0) and (2 , 0) and y - intercept (0 , 2)