Given
[tex]\begin{gathered} \mu=77 \\ \sigma=10 \end{gathered}[/tex]The z-score formula is
[tex]z=\frac{x-\mu}{\sigma}[/tex]In our case,
[tex]\Rightarrow z=\frac{87-77}{10}=\frac{10}{10}=1[/tex]Using a z-score table,
[tex]\Rightarrow P(X<87)=0.8413[/tex]Then,
[tex]\begin{gathered} P(X>87)=1-P(X<87)=1-0.8413=0.1587=15.87\% \\ \Rightarrow P(X>87)\approx16\% \end{gathered}[/tex]