4 Drag the tiles to the correct boxes. Not all tiles will be used. Match each equation with a value of x that satisfies it. 18 1 2 -3 5 CO ✓02 + 7 4 ♡ (ir — 2)4 Reset Next


You need to solve for "x" in each equation given in the exercise:
Equation 1
[tex]\sqrt[]{x^2+7}=4[/tex]- You need to apply the following property:
[tex](\sqrt[n]{a})^n=a[/tex]Then:
[tex]\begin{gathered} (\sqrt[]{x^2+7})^2=(4)^2 \\ \\ x^2+7=16 \end{gathered}[/tex]- Subtract 7 from both sides of the equation:
[tex]\begin{gathered} x^2+7-(7)=16-(7) \\ x^2=9 \end{gathered}[/tex]- Finally, you have to take the square root of both sides of the equation:
[tex]\begin{gathered} \sqrt[]{x^2}=\pm\sqrt[]{9} \\ \\ x_1=\sqrt[]{9}=3 \\ \\ x_2=-\sqrt[]{9}=-3 \end{gathered}[/tex]In order to know which one satisfies the equation, let's substitute both values into the original equation and evaluate.
Then, for:
[tex]x=3[/tex]You get:
[tex]\begin{gathered} \sqrt[]{(3)^2+7}=4 \\ \sqrt[]{16}=4 \\ 4=4\text{ (True)} \end{gathered}[/tex]For:
[tex]x=-3[/tex]You get:
[tex]\begin{gathered} \sqrt[]{(-3)^2+7}=4 \\ 4=4(\text{True)} \end{gathered}[/tex]When a negative value has an even exponent, the result is always positive.
Equation 2
[tex](x-2)^{\frac{1}{4}}=2[/tex]- You need to apply this property:
[tex]a^{\frac{1}{n}}=\sqrt[n]{a}[/tex]Then:
[tex]\sqrt[4]{x-2}^{}=2[/tex]- Now, applying the property:
[tex](\sqrt[n]{a})^n=a[/tex]You get:
[tex]\begin{gathered} (\sqrt[4]{x-2}^{})^4=(2)^4 \\ x-2=16 \end{gathered}[/tex]- Finally, adding 2 to both sides of the equation, you get:
[tex]\begin{gathered} x-2+(2)=16+(2) \\ x=18 \end{gathered}[/tex]Check the answer:
[tex]\begin{gathered} \sqrt[4]{18-2}^{}=2\text{ } \\ 2=2(\text{True)} \end{gathered}[/tex]Equation 3
[tex]\sqrt[3]{1-x}=-1[/tex]- Knowing the properties explained before, you get:
[tex]\begin{gathered} (\sqrt[3]{1-x})^3=(-1)^3 \\ 1-x=-1 \\ \end{gathered}[/tex]- Now you can subtract 1 from both sides of the equation:
[tex]\begin{gathered} 1-x-(1)=-1-(1) \\ -x=-2 \end{gathered}[/tex]- Finally, you have to multiply both sides of the equation by -1:
[tex]\begin{gathered} (-1)(-x)=(-2)(-1) \\ x=2 \end{gathered}[/tex]Check the solution:
[tex]\begin{gathered} \sqrt[3]{1-2}=-1 \\ \sqrt[3]{-1}=-1 \\ -1=-1(\text{True)} \end{gathered}[/tex]The answer is: