Given the following equation:
[tex]y=(x-2)^2-1[/tex]The standard form of the equation of the parabola is:
[tex](x-h)^2=4p(y-k)[/tex]then, if we add 1 on both sides of the equation, we get:
[tex]\begin{gathered} y+1=(x-2)^2-1+1 \\ \Rightarrow(x-2)^2=y+1^{} \end{gathered}[/tex]therefore, the standard form of the equation is (x-2)^2 = y + 1