Solution
Step 1
Write out the equation
[tex]h(t)=46t-16t^2[/tex]Step 2
Differentiate the equation to get the equation of the maximum height
[tex]\frac{dh}{dt}=(1)46t^{1-1}-2(16)t^{2-1}[/tex][tex]\frac{dh}{dt}=\text{ 46-32t}[/tex]Step 3
Equate the differentiated equation to zero and find the value of t at the maximum height
[tex]\begin{gathered} 46-32t\text{ = 0} \\ 46\text{ = 32t} \\ \frac{46}{32}=\frac{32t}{32} \\ t\text{ = 1.44seconds} \end{gathered}[/tex]To the nearest hundredth, the time t, it will take the ball to reach the maximum height when thrown vertically upwards is 1.44 seconds.
Hence the right answer is option B