KLM~PQR with a scale factor of 3:5, find the perimeter of PQR

We have:
KL = 6
KM = 12
LM = 15
And the given scale factor is 3:5.
The KLM and PQR triangles are similar, therefore:
KL:PQ = 3:5
KM:PR = 3:5
LM:QR = 3:5
This can also be expressed as a fraction:
[tex]\frac{KL}{PQ}=\frac{3}{5}[/tex]Substitue KL = 6 and find PQ:
[tex]\begin{gathered} \frac{6}{PQ}=\frac{3}{5} \\ 6\cdot5=3\cdot PQ \\ 30=3\cdot PQ \\ \frac{30}{3}=\frac{3PQ}{3} \\ PQ=10 \end{gathered}[/tex]For side PR:
[tex]\frac{KM}{PR}=\frac{3}{5}[/tex]KM = 12, so:
[tex]\begin{gathered} \frac{12}{PR}=\frac{3}{5} \\ 12\cdot5=3\cdot PR \\ 60=3\cdot PR \\ \frac{60}{3}=\frac{3PR}{3} \\ PR=20 \end{gathered}[/tex]And for side QR:
[tex]\frac{LM}{QR}=\frac{3}{5}[/tex]LM = 15, then:
[tex]\begin{gathered} \frac{15}{QR}=\frac{3}{5} \\ 15\cdot5=3\cdot QR \\ 75=3\cdot QR \\ \frac{75}{3}=\frac{3QR}{3} \\ QR=25 \end{gathered}[/tex]Next, the perimeter is given by:
[tex]P=PQ+PR+QR=10+20+25=55[/tex]Answer: The perimeter of ΔPQR is 55.