Consider the following graph of two functionsStep 2: Find (g-f)(-5)Step 3: Find (g.f)(1)Step 4: Find (f/g)(-3)


Answer:
• (g-f)(-5)=16
,• (g.f)(-1)=-16
,• (f/g)(-3)=-1
Explanation:
Given the graph of f(x) and g(x):
Part 2
• When x=-5, f(x)=-8.
,• When x=-5, g(x)=8
Thus:
[tex]\begin{gathered} f(-5)=-8 \\ g(-5)=8 \end{gathered}[/tex]The composition of the functions:
[tex]\begin{gathered} (g-f)(-5)=g(-5)-f(-5) \\ =8-(-8) \\ =8+8 \\ \implies(g-f)(-5)=16 \end{gathered}[/tex]The answer is 16.
Part 3
• When x=1, f(x)=4.
,• When x=1, g(x)=-4
Therefore:
[tex]\begin{gathered} f(1)=4 \\ g(1)=-4 \\ \implies(g\cdot f)(-1)=(g)(-1)\cdot(f)(-1) \\ =-4\times4 \\ =-16 \end{gathered}[/tex]The answer is -16.
Part 4
• When x=-3, f(x)=-4.
,• When x=-3, g(x)=4
Therefore:
[tex]\begin{gathered} f(-3)=-4 \\ g(-3)=4 \end{gathered}[/tex]The composition is calculated below:
[tex](\frac{f}{g})(-3)=\frac{f(-3)}{g(-3)}=-\frac{4}{4}=-1[/tex]The answer is -1.